Difference between revisions of "Amazon SageMaker"
Jump to navigation
Jump to search
↑ https://aws.amazon.com/about-aws/whats-new/2017/11/introducing-amazon-sagemaker/
Line 3: | Line 3: | ||
== Example == | == Example == | ||
+ | <code>[[AmazonSageMakerFeatureStoreAccess]]</code> | ||
{ | { | ||
"Version": "2012-10-17", | "Version": "2012-10-17", |
Revision as of 08:35, 2 May 2022
wikipedia:Amazon SageMaker (Nov 2017) [1] Machine learning service to create, train, and deploy machine-learning (ML) models in AWS.
Example
AmazonSageMakerFeatureStoreAccess
{ "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:GetObject", "s3:PutObject", "s3:DeleteObject", "s3:ListBucket" ], "Resource": [ "arn:aws:s3:::*" ] } ] }
Related
See also
- AWS SageMaker,
aws sagemaker
- AWS ML: Amazon SageMaker, Amazon Kendra, AWS Forecast, Amazon Macie, Amazon Textract, Amazon SageMaker Canvas
- Machine learning, Deep learning, AWS Sagemaker, PyTorch, Kubeflow, TensorFlow, Keras, Torch, Spark ML, Tinygrad, Apple Neural Engine, Scikit-learn, MNIST, MLOps, AutoML, ClearML, PostgresML, AWS Batch, Transformer, Diffusion, Backpropagation, JAX, Vector database, LLM, The Forrester Wave: AI/ML Platforms
Advertising: