Difference between revisions of "Amazon SageMaker"
Jump to navigation
Jump to search
↑ https://aws.amazon.com/about-aws/whats-new/2017/11/introducing-amazon-sagemaker/
(5 intermediate revisions by 3 users not shown) | |||
Line 2: | Line 2: | ||
[[Machine learning]] service to create, train, and deploy machine-learning (ML) models in AWS. | [[Machine learning]] service to create, train, and deploy machine-learning (ML) models in AWS. | ||
+ | == Example IAM Policies == | ||
+ | <code>[[AmazonSageMakerFeatureStoreAccess]]</code> | ||
{ | { | ||
"Version": "2012-10-17", | "Version": "2012-10-17", | ||
Line 8: | Line 10: | ||
"Effect": "Allow", | "Effect": "Allow", | ||
"Action": [ | "Action": [ | ||
− | "s3:GetObject", | + | "[[s3:GetObject]]", |
− | "s3:PutObject", | + | "[[s3:PutObject]]", |
− | "s3:DeleteObject", | + | "[[s3:DeleteObject]]", |
− | "s3:ListBucket" | + | "[[s3:ListBucket]]" |
], | ], | ||
"Resource": [ | "Resource": [ | ||
Line 25: | Line 27: | ||
* [[AmazonSageMakerFullAccess]] | * [[AmazonSageMakerFullAccess]] | ||
* [[ScheduleConfig]] | * [[ScheduleConfig]] | ||
+ | * [[Colab]] | ||
+ | |||
+ | == Activities == | ||
+ | * Read https://aws.amazon.com/blogs/machine-learning/train-fraudulent-payment-detection-with-amazon-sagemaker/ | ||
== See also == | == See also == |
Latest revision as of 05:26, 24 January 2023
wikipedia:Amazon SageMaker (Nov 2017) [1] Machine learning service to create, train, and deploy machine-learning (ML) models in AWS.
Example IAM Policies[edit]
AmazonSageMakerFeatureStoreAccess
{ "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:GetObject", "s3:PutObject", "s3:DeleteObject", "s3:ListBucket" ], "Resource": [ "arn:aws:s3:::*" ] } ] }
Related[edit]
Activities[edit]
See also[edit]
- AWS SageMaker,
aws sagemaker
- AWS ML: Amazon SageMaker, Amazon Kendra, AWS Forecast, Amazon Macie, Amazon Textract, Amazon SageMaker Canvas
- Machine learning, Deep learning, AWS Sagemaker, PyTorch, Kubeflow, TensorFlow, Keras, Torch, Spark ML, Tinygrad, Apple Neural Engine, Scikit-learn, MNIST, MLOps, AutoML, ClearML, PostgresML, AWS Batch, Transformer, Diffusion, Backpropagation, JAX, Vector database, LLM, The Forrester Wave: AI/ML Platforms
Advertising: