/root/airflow/airflow.cfg
Jump to navigation
Jump to search
[core] # The folder where your airflow pipelines live, most likely a # subfolder in a code repository. This path must be absolute. dags_folder = /root/airflow/dags # Hostname by providing a path to a callable, which will resolve the hostname. # The format is "package.function". # # For example, default value "airflow.utils.net.getfqdn" means that result from patched # version of socket.getfqdn() - see https://github.com/python/cpython/issues/49254. # # No argument should be required in the function specified. # If using IP address as hostname is preferred, use value ``airflow.utils.net.get_host_ip_address`` hostname_callable = airflow.utils.net.getfqdn # Default timezone in case supplied date times are naive # can be utc (default), system, or any IANA timezone string (e.g. Europe/Amsterdam) default_timezone = utc # The executor class that airflow should use. Choices include # ``SequentialExecutor``, ``LocalExecutor``, ``CeleryExecutor``, ``DaskExecutor``, # ``KubernetesExecutor``, ``CeleryKubernetesExecutor`` or the # full import path to the class when using a custom executor. executor = SequentialExecutor # This defines the maximum number of task instances that can run concurrently per scheduler in # Airflow, regardless of the worker count. Generally this value, multiplied by the number of # schedulers in your cluster, is the maximum number of task instances with the running # state in the metadata database. parallelism = 32 # The maximum number of task instances allowed to run concurrently in each DAG. To calculate # the number of tasks that is running concurrently for a DAG, add up the number of running # tasks for all DAG runs of the DAG. This is configurable at the DAG level with ``max_active_tasks``, # which is defaulted as ``max_active_tasks_per_dag``. # # An example scenario when this would be useful is when you want to stop a new dag with an early # start date from stealing all the executor slots in a cluster. max_active_tasks_per_dag = 16 # Are DAGs paused by default at creation dags_are_paused_at_creation = True # The maximum number of active DAG runs per DAG. The scheduler will not create more DAG runs # if it reaches the limit. This is configurable at the DAG level with ``max_active_runs``, # which is defaulted as ``max_active_runs_per_dag``. max_active_runs_per_dag = 16 # Whether to load the DAG examples that ship with Airflow. It's good to # get started, but you probably want to set this to ``False`` in a production # environment load_examples = True # Path to the folder containing Airflow plugins plugins_folder = /root/airflow/plugins # Should tasks be executed via forking of the parent process ("False", # the speedier option) or by spawning a new python process ("True" slow, # but means plugin changes picked up by tasks straight away) execute_tasks_new_python_interpreter = False # Secret key to save connection passwords in the db fernet_key = # Whether to disable pickling dags donot_pickle = True # How long before timing out a python file import dagbag_import_timeout = 30.0 # Should a traceback be shown in the UI for dagbag import errors, # instead of just the exception message dagbag_import_error_tracebacks = True # If tracebacks are shown, how many entries from the traceback should be shown dagbag_import_error_traceback_depth = 2 # How long before timing out a DagFileProcessor, which processes a dag file dag_file_processor_timeout = 50 # The class to use for running task instances in a subprocess. # Choices include StandardTaskRunner, CgroupTaskRunner or the full import path to the class # when using a custom task runner. task_runner = StandardTaskRunner # If set, tasks without a ``run_as_user`` argument will be run with this user # Can be used to de-elevate a sudo user running Airflow when executing tasks default_impersonation = # What security module to use (for example kerberos) security = # Turn unit test mode on (overwrites many configuration options with test # values at runtime) unit_test_mode = False # Whether to enable pickling for xcom (note that this is insecure and allows for # RCE exploits). enable_xcom_pickling = False # When a task is killed forcefully, this is the amount of time in seconds that # it has to cleanup after it is sent a SIGTERM, before it is SIGKILLED killed_task_cleanup_time = 60 # Whether to override params with dag_run.conf. If you pass some key-value pairs # through ``airflow dags backfill -c`` or # ``airflow dags trigger -c``, the key-value pairs will override the existing ones in params. dag_run_conf_overrides_params = True # When discovering DAGs, ignore any files that don't contain the strings ``DAG`` and ``airflow``. dag_discovery_safe_mode = True # The pattern syntax used in the ".airflowignore" files in the DAG directories. Valid values are # ``regexp`` or ``glob``. dag_ignore_file_syntax = regexp # The number of retries each task is going to have by default. Can be overridden at dag or task level. default_task_retries = 0 # The number of seconds each task is going to wait by default between retries. Can be overridden at # dag or task level. default_task_retry_delay = 300 # The weighting method used for the effective total priority weight of the task default_task_weight_rule = downstream # The default task execution_timeout value for the operators. Expected an integer value to # be passed into timedelta as seconds. If not specified, then the value is considered as None, # meaning that the operators are never timed out by default. default_task_execution_timeout = # Updating serialized DAG can not be faster than a minimum interval to reduce database write rate. min_serialized_dag_update_interval = 30 # If True, serialized DAGs are compressed before writing to DB. # Note: this will disable the DAG dependencies view compress_serialized_dags = False # Fetching serialized DAG can not be faster than a minimum interval to reduce database # read rate. This config controls when your DAGs are updated in the Webserver min_serialized_dag_fetch_interval = 10 # Maximum number of Rendered Task Instance Fields (Template Fields) per task to store # in the Database. # All the template_fields for each of Task Instance are stored in the Database. # Keeping this number small may cause an error when you try to view ``Rendered`` tab in # TaskInstance view for older tasks. max_num_rendered_ti_fields_per_task = 30 # On each dagrun check against defined SLAs check_slas = True # Path to custom XCom class that will be used to store and resolve operators results # Example: xcom_backend = path.to.CustomXCom xcom_backend = airflow.models.xcom.BaseXCom # By default Airflow plugins are lazily-loaded (only loaded when required). Set it to ``False``, # if you want to load plugins whenever 'airflow' is invoked via cli or loaded from module. lazy_load_plugins = True # By default Airflow providers are lazily-discovered (discovery and imports happen only when required). # Set it to False, if you want to discover providers whenever 'airflow' is invoked via cli or # loaded from module. lazy_discover_providers = True # Hide sensitive Variables or Connection extra json keys from UI and task logs when set to True # # (Connection passwords are always hidden in logs) hide_sensitive_var_conn_fields = True # A comma-separated list of extra sensitive keywords to look for in variables names or connection's # extra JSON. sensitive_var_conn_names = # Task Slot counts for ``default_pool``. This setting would not have any effect in an existing # deployment where the ``default_pool`` is already created. For existing deployments, users can # change the number of slots using Webserver, API or the CLI default_pool_task_slot_count = 128 # The maximum list/dict length an XCom can push to trigger task mapping. If the pushed list/dict has a # length exceeding this value, the task pushing the XCom will be failed automatically to prevent the # mapped tasks from clogging the scheduler. max_map_length = 1024 # The default umask to use for process when run in daemon mode (scheduler, worker, etc.) # # This controls the file-creation mode mask which determines the initial value of file permission bits # for newly created files. # # This value is treated as an octal-integer. daemon_umask = 0o077 # Class to use as dataset manager. # Example: dataset_manager_class = airflow.datasets.manager.DatasetManager # dataset_manager_class = # Kwargs to supply to dataset manager. # Example: dataset_manager_kwargs = {"some_param": "some_value"} # dataset_manager_kwargs = [database] # The SqlAlchemy connection string to the metadata database. # SqlAlchemy supports many different database engines. # More information here: # http://airflow.apache.org/docs/apache-airflow/stable/howto/set-up-database.html#database-uri sql_alchemy_conn = sqlite:////root/airflow/airflow.db # Extra engine specific keyword args passed to SQLAlchemy's create_engine, as a JSON-encoded value # Example: sql_alchemy_engine_args = {"arg1": True} # sql_alchemy_engine_args = # The encoding for the databases sql_engine_encoding = utf-8 # Collation for ``dag_id``, ``task_id``, ``key``, ``external_executor_id`` columns # in case they have different encoding. # By default this collation is the same as the database collation, however for ``mysql`` and ``mariadb`` # the default is ``utf8mb3_bin`` so that the index sizes of our index keys will not exceed # the maximum size of allowed index when collation is set to ``utf8mb4`` variant # (see https://github.com/apache/airflow/pull/17603#issuecomment-901121618). # sql_engine_collation_for_ids = # If SqlAlchemy should pool database connections. sql_alchemy_pool_enabled = True # The SqlAlchemy pool size is the maximum number of database connections # in the pool. 0 indicates no limit. sql_alchemy_pool_size = 5 # The maximum overflow size of the pool. # When the number of checked-out connections reaches the size set in pool_size, # additional connections will be returned up to this limit. # When those additional connections are returned to the pool, they are disconnected and discarded. # It follows then that the total number of simultaneous connections the pool will allow # is pool_size + max_overflow, # and the total number of "sleeping" connections the pool will allow is pool_size. # max_overflow can be set to ``-1`` to indicate no overflow limit; # no limit will be placed on the total number of concurrent connections. Defaults to ``10``. sql_alchemy_max_overflow = 10 # The SqlAlchemy pool recycle is the number of seconds a connection # can be idle in the pool before it is invalidated. This config does # not apply to sqlite. If the number of DB connections is ever exceeded, # a lower config value will allow the system to recover faster. sql_alchemy_pool_recycle = 1800 # Check connection at the start of each connection pool checkout. # Typically, this is a simple statement like "SELECT 1". # More information here: # https://docs.sqlalchemy.org/en/14/core/pooling.html#disconnect-handling-pessimistic
Advertising: